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Global stability of stationary patterns in bistable reaction-diffusion systems
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We study a piecewise linear version of a one-component, one-dimensional reaction-diffusion bistable
model, with the aim of analyzing the effect of boundary conditions on the formation and stability of sta-
tionary patterns. The analysis proceeds through the study of the behavior of the Lyapunov functional in
terms of a control parameter: the reflectivity at the boundary. We show that, in this example, this func-
tional has a very simple and direct geometrical interpretation.
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I. INTRODUCTION

The subject of self-organization or nonequilibrium pat-
tern formation has captured the attention of researchers
during more than a decade, and is by now one of the most
active fields in the physics of complex systems [1]. The
extremely rich variety of nonequilibrium systems that one
can consider calls for different descriptions. Among
them, the reaction-diffusion (RD) approach has shown to
be a very fertile source of models for interesting phenom-
ena in natural and social sciences, where structures can
arise and last for longer or shorter periods of time ac-
cording to their degree of stability [2]. In particular, the
possibility of a solitary pattern without propagation in an
infinite medium was established [3].

For one- and two-component systems, boundary condi-
tions (BC’s) have been recently shown to play a relevant
role in the formation and stability of patterns [4,5]. We
are concerned here with the role of BC’s in pattern selec-
tion, and particularly with the global stability of the re-
sulting structures. As it was indicated in Ref. [4], the
choice of Neumann or Dirichlet BC corresponds physi-
cally to complete reflection or absorption at the boun-
daries, respectively. The more realistic case of a partially
reflecting (or absorbing) boundary is adequately taken
into account by the albedo BC [4,5].

The specific model we shall focus on belongs to a fami-
ly of one-component models with a broad range of appli-
cations [7]. These are so-called bistable reaction-diffusion
models, whose general formulation is

ar
at
where D is the diffusion coefficient, T(z,t) is a real field

that represents the magnitude of interest, and the non-
linear term F(T) is the source (or dissipation) term. In

=DV?T+F(T), (0
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the bistable case, F(T) is generally a cubiclike function
(with three roots, two stable and one unstable fixed
points).

As in Ref. [4,5], we shall concentrate on a bounded
one-dimensional system and impose the most general
linear homogeneous BC, namely, the albedo BC. These
relate the normal derivative of the field with its value at
the boundary T, through an albedo parameter k:

T\ — k1. P

on r
Their physical meaning is that the boundary acts as a
partially absorbing or reflecting medium. They have
Neumann’s BC (totally reflecting, i.e., k—0) and
Dirichlet’s BC (totally absorbing, i.e., kK — o) as limits,
and can describe most real situations in a more accurate
way.

In this paper we want to present an analysis of the
effect of the BC on the formation and stability of station-
ary patterns through an overview of the global stability of
the structures. In order to reach such a goal we shall
profit by using the concept of Lyapunov functional and
through its study get information on the form that the al-
bedo parameter controls the shape of the patterns and
their global stability. This kind of approach, based on
the use of the concept of the Lyapunov functional, has
not been exploited in the realm of reaction-diffusion sys-
tems because it is usually not possible, insofar as some
potential conditions are not fulfilled, to obtain a
Lyapunov function in a general problem. However, Gra-
ham and collaborators [6], who have been pioneers in in-
troducing the concept of a nonequilibrium potential, have
investigated the form of such Lyapunov-like functionals
in several problems of systems far from equilibrium, such
as spatially extended systems described by the complex
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Ginzburg-Landau equation. Such results indicate the
possibility of getting information about such functionals
and about global stability even though the system does
not fulfill the above potential conditions. In this work, as
we study a one-component system, the form of the func-
tional is well known [7]. Nevertheless, we perform such
an analysis in order to gain insight into the way that the
variation of the albedo parameter changes the value of
the Lyapunov functional, altering the relative stability by
including changes between the stable and metastable
states. The stable states will correspond to attractors
(minima) of the functional while the unstable ones will be
saddle points, defining the barrier height between attrac-
tors.

II. THE BALLAST RESISTOR

We particularize our analysis to the ballast resistor
model [8,9]. The ballast resistor has been used as a
current stabilizer for a long time. It consists of a wire (or
a thin ribbon) through which an electric current flows,
immersed in a thermal bath whose temperature is taken
as reference, i.e., T =0. For the sake of concreteness we
restrict ourselves here to its superconducting version, de-
scribed by the so-called ‘“hot-spot” model and used as a
model for thermal transfer in superconducting micro-
bridges [10]. Below the critical temperature T, >0 there
is no Joule dissipation; above T, the latter occurs at a ba-
sically constant rate (independent of 7). The piecewise
linearization results from the above-mentioned charac-
teristics, as a natural approximation. After a suitable
variable rescaling, the energy-balance equation can be
written in the form

%tZ=V2T——T+6(T—TCh), 3)
where 6 is the Heaviside function, and T, =T,/T},
T, >0 being the ratio between the dissipation rate and
the transfer of heat to the bath. T'(r,t) is the scaled tem-
perature field, which determines the (nonequilibrium)
state of the system.

It turns out [9] that, when T, <1, the system has only
two uniform stationary states: 7 =0 and T =1. When
albedo BC’s are imposed [4], only T =0 survives as a sta-
tionary and homogeneous solution. There are however
inhomogeneous stationary solutions to Eq. (3) where two
kinds of regions coexist: those where T' > T, (the system
is said to be activated), and those where T < T, (the sys-
tem is called unactivated). In this work we restrict our-
selves to the one-dimensional case (wire) and consider the
system to be bounded in the interval —z; <z <z;. In the
near future we shall consider other geometries. We keep
the left end either isolated (Neumann BC) or in contact
with the heat bath (Dirichlet BC) and assume that the
right end is partially isolated, so that the heat flux at this
end is partially reflected (albedo BC).

Equation (3) can be solved, in the stationary case, fol-
lowing the technique already discussed in Ref. [4].
Different analytical forms (which are in this case linear
combinations of hyperbolic functions) should be proposed
for T(z), depending on whether T>T, or T <T,.

Those forms, as well as their first derivatives, must be
matched at the spatial coordinates of the boundaries be-
tween the activated and unactivated regions, that we
denote generally by z,. Through that matching pro-
cedure we get the general solution for the stationary case.
In order to identify the matching points z,;, we have to
solve the transcendental equations given by the condi-
tions T'(z,;)=T,,. These result in self-consistent implicit
equations for z,; in terms of k.

The local stability can be analyzed by means of the
linearized equation for the perturbation, in a standard
way. The eigenvalues of this equation allow us to distin-
guish the unstable patterns from the stable ones. Writing
the solution as

T(z,t)=Ty(z)+d(z)e )

where T (z) is a stationary solution, we get to the first
order the following eigenvalue equation:

BZQ 8(2 T Zg ) _

- Té— D mma =M, (5)

9z2 ¢ ; laTst/aZ|zC ¢ ¢
which has to be solved numerically with the same BC (the
sum runs over all the matching points). The eigenvalues
determine the local stability properties of the stationary
patterns.

III. GLOBAL STABILITY:
THE LYAPUNOY FUNCTIONAL

Despite the usefulness of the linear stability analysis, it
does not distinguish between the stable and metastable
states. This is an important question when there are two
or more locally stable structures for a given BC, as in our
case. In order to perform a global stability analysis, it be-
comes necessary to write Eq. (3) in a potential form:

AT _ _ 3J[T]
ot 8T ©
where F is the Lyapunov functional [7], defined as
+z 2
ATI= [ (= STH+ TR+ | o)
zy 7
and satisfying
2
q=dF __ 87| 4 <
F==—[ |57 | ==0. (8)

We see that F vanishes for stationary distributions and is
negative in any other case. Every stable stationary distri-
bution corresponds to a minimum of this functional.
During its temporal evolution, F decreases until it
reaches one of its minima. Hence, the evolution of this
system consists in the approach to one of its stable sta-
tionary distributions. ¥ is of great usefulness in discuss-
ing the global stability of the patterns. The unstable
structures are related to extrema which are not minima of
F.
In the present case, § is defined by

9[7‘1:foT[—T'+9<T'—Tch>1dT' , ©)
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and we need to impose the Albedo BC at +z;. Integrat-
ing by parts the kinetic term in Eq. (7), we find that

+z +z
FHT]= f_ZLLTc"G(T_Tch)_ % f_ZLLTe(T-—TCh )dz
_18 rtu,
Tord ., Tz (10)

where we have used Eq. (3) to simplify inside the integral.
In the case of specializing the functional at the stationary
solutions, it takes the simple form

F=1[(lower area)—(upper area)] , (11)

where the terms upper and lower refer, respectively, to
the areas of the activated region above and below T, (see
Fig. 1). In two-region patterns, that region is located be-
tween z, and z;, and in three-region patterns, it is located
between z.and z.,. Despite the fact that its validity
seems to be restricted to the present model, this is a re-
markable result: the value of & is uniquely determined by
this area difference, which is easily calculable.

As it is to be expected, linearly stable solutions are rel-
ative minima of F#. The stable stationary solution corre-
sponds to the absolute minimum of #. The other linearly
stable solutions correspond to metastable states. The
dependence of F upon k will give us information about
the way in which the boundary conditions affect the glo-
bal stability of the structures.

The Lyapunov functional so obtained can be explored
in the neighborhood of a reference state. We particular-
ize the analysis to two-region patterns (to be discussed
later). In order to analyze the nature of the resulting
solution we make a functional expansion of Eq. (8)
around a stationary solution T, (z):

+z
AT () +d(z,)=FH Ty (D]+ [ [6*+(V$)1dz
L
—¢?/Tl(z,) . (12)

By using as a perturbation function an eigenfunction of
the linear stability problem (satisfying the same BC) as in
Eq. (4) and using Eq. (5), we obtain
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FIG. 1. A typical nonuniform stationary pattern for this sys-
tem. The areas referred to in Eq. (11) are shaded.
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leading finally to

— Aot
57[Tst(z)+¢(z,t)]—E7[Tst(z)]—?f_z ¢*dz , (14)
L

which shows explicitly that the unstable patterns are as-
sociated with saddle points in the functional space. It is
the eigenfunction in the unstable manifold that produces
the increase of the functional, showing the saddle-point
character. The value of F at the unstable patterns gives
the barrier height between the uniform and nonuniform
attractors (the separator between the respective attrac-
tion basins). This information is extremely relevant in or-
der to study the effects of fluctuations on this type of sys-
tems [6,11].

IV. STATIONARY STRUCTURES
AND THEIR STABILITY

Here we discuss the formation and global stability of
several types of stationary patterns. We focus our atten-
tion on simple patterns. Five cases will be considered:
patterns of two regions with an activated zone on the
right and (a) a Dirichlet BC or (b) a Neumann BC at
—z;; patterns of three regions with a central activated
zone and (c) a Neumann BC or (d) a Dirichlet BC at
—z;; and (e) periodic structures. We impose the albedo
BC at the right end in all the cases except (e), where the
BC’s are naturally Neumann BC’s in both boundaries.
After some algebra, the general solution in the two-region
case can be written in terms of the values of the tempera-
ture profile and its derivative at z =z, T'(z,), and T'(z,),
as

T(z)=T(z,)cosh(z —z,)+ T'(z,)sinh(z —z,) (15)
in the unactivated region, and
T(z)=[T(z,)—1]cosh(z —z,)
+T'(z,)sinh(z —z,)+1 (16)

in the activated region. If we impose the BC at —z; and
the constraint at z., we obtain
_ Tgsinh(z +z;)

Tz)= cosh(z, +z; )

and
T/sinh(z +z; )

T(z)= cosh(z, +z; )

+1—cosh(z +z;) (18)

for the Dirichlet BC, case (a), and

= T.cosh(z +z;) (19)
7= sinh(z, +2z;)

and

T.cosh(z +z;)
T(z)=——————+1—cosh(z +z;) (20)

sinh(z, +2z; )
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for the Neumann BC, case (b). Note that these BC’s im-
pose, respectively, the restrictions T, <T, and T, =<T,.
The albedo BC at z; gives the relationship between k and
T,. The method can be readily generalized for structures
with many zones.

A. Two-region patterns

In the case of two-region patterns, there is a maximum
allowed value of k, beyond which three-zone structures
appear. In Fig. 2 the behavior of z, vs k can be seen for
the patterns arising in case (a) (the curves are parameter-
ized with the value of T,,). For small k values there are
two branches of z.(T,,,k) and therefore two nonuniform
structures exist, associated with this boundary condition.
The patterns corresponding to the lower branch have a
large activated zone. T, appears as a control parameter
rendering qualitative changes in the shape of the
branches. For small values of T,,, they are “open;” the
situation changes when T, increases, and the branches
are “closed.” It is stability which selects between these
branches. As we shall see later, the lower branch turns
out to be the stable one. Figure 3 shows the forms of typ-
ical patterns for this case. Curves 1 and 2 correspond, re-
spectively, to a lower and upper branch of z.(T,,,k). The
behavior of z, vs k for the patterns in case (b) is depicted
in Fig. 4. We see that there exists only one branch for
each value of T, and k. Figure 5 shows typical patterns
for this case.

The linear stability results for two-region patterns
show that the structures obtained by imposing the Neu-
mann BC at —z; [case (b)] are unstable, whereas for case
(a), those corresponding to the lower (upper) branches in
Fig. 2 are stable (unstable). Similarly to what was found
in [4,5], the branches lying above the marginal-stability
line (determined by the vertices of the closed curves) cor-
respond to unstable stationary solutions, whereas those
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FIG. 2. Plot of z, vs k for case (a). The existence of a max-
imum allowed value of k for each T, can be appreciated; more-
over, the solutions are twofold. The values of T, for each
curve are (1) 0.25, (2) 0.34, (3) 0.382, (4) 0.404, (5) 0.42, (6) 0.43,
(7) 0.435, (8) 0.44, (9) 0.445, and (10) 0.455. A value of z; =2 has
been adopted throughout.

100

080 -

060

1
N

T(z)

040 |-

020

000 1 L 4
2.00 100 000 100 200
z

FIG. 3. Typical patterns arising in case (a), corresponding to
T.,=0.404 and k=0.2. Curve 1 (2) corresponds to the lower
(upper) branch of curve 4 in Fig. (2). Note the difference in the
areas of the activated region.
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FIG. 4. Plot of z, vs k for case (b). Here also a maximum al-
lowed k exists, but in contrast with case (a) the curves are single
valued. The values of T, for each curve are (1) 0.045, (2) 0.225,
(3) 0.315, (4) 0.405, (5) 0.45, (6) 0.5, (7) 0.55, and (8) 0.65.
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FIG. 5. Typical patterns arising in case (b), corresponding to
T, =0.405 and three different values of k: 0.11 (curve 1), 0.5
(curve 2), and 0.97 (curve 3).
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below it are stable. It turned out that
T, (stable) > Te(unstable) @S €xpected. From the result of the
analysis of the patterns obtained in this work, and from
others for similar systems [4,5], we can infer that the
stable patterns are associated with the existence of an im-
portant activated region, which is equivalent to large dis-
sipation. Comparing the areas above and below the T,
level in the activated region, we see that stable patterns
are associated with a larger upper area.

If we remember that 7 =0 is a stable stationary homo-
geneous solution, it is necessary to make a global stability
analysis in order to resolve stable from metastable states.
Figure 6, corresponding to case (a), shows ¥ as a function
of the albedo parameter k, for different values of T,
which correspond to the “open” branches in Fig. 2. The
lower (upper) branch corresponds to the smaller (larger)
value of z,. The same feature for the “closed” branches
can be seen in Fig. 7, where the cusp corresponds to the
marginal stability point. The global analysis confirms the
results obtained by linearization and, in addition, allows
us to distinguish the stable from the metastable patterns.
In fact, the inhomogeneous stationary structure is the
stable solution for the whole physical k range, for values
of T, lower or of the order of 0.32 (see Fig. 6). This situ-
ation changes when T, increases, and there are values of
T, and k such that T'=0 is the stable state and the
nonuniform patterns are metastable (see Fig. 7). We see
that k appears as a control parameter whose variation
originates a change of the relative stability between local-
ly stable structures. In Fig. 8 we show the behavior of
the Lyapunov functional vs k for patterns in case (b).
The curves are monotonically increasing with k, so the
unstable patterns will become more unstable as k grows.

B. Three-region patterns

In the case of three-region patterns, there are no limi-
tations on the value of k. As already stated, in the limit
k — o, we recover the Dirichlet BC. Three-region pat-
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FIG. 6. The value that the Lyapunov functional takes on the
stationary patterns of case (a), plotted against k, for the “open”
branches in Fig. (2). The values of T, for each curve are (1)
0.26, (2) 0.27, (3) 0.28, (4) 0.29, (5) 0.30, (6) 0.31, and (7) 0.32.
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FIG. 7. The value that the Lyapunov functional takes on the
stationary patterns of case (a), plotted against k, for the
“closed” branches in Fig. (2). The values of T, for each curve
are (1) 0.44, (2) 0.45, (3) 0.46, and (4) 0.47.

terns have two matching points indicating the limits be-
tween the activated and the unactivated regions. In Figs.
9 to 12 we show the behavior of z, vs k, together with
typical patterns for cases (c) and (d), respectively. Figure
9 shows that there exists only one pair of matching points
for each value of k and T, that is, only one nonuniform
stationary solution associated with the external condi-
tions (the same result was obtained for two-region pat-
terns under an identical BC). These structures can only
exist in a finite interval of k. Figure 10 shows typical pat-
terns for this case. In Fig. 11, the behavior of z, vs k is
very different: we see that there exists a region where for
each value of k and T, there are two pairs of values
(z.1,2.,) (that is, two nonuniform stationary patterns).
The external branch corresponds to structures with
larger activated zones. Typical patterns for this case can
be seen in Fig. 12, where the curve indicated as (1) [re-
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FIG. 8. The same as before, for case (b): The value of T, for
each curve are (1) 0.045, (2) 0.225, (3) 0.315, (4) 0.405, (5) 0.45,
(6) 0.5, and (7) 0.55.
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FIG. 9. Plot of the z,; vs k for case (c). Note that the solu-
tions are single valued: here the upper branch gives z.;, and the

lower one z.,. The values of T, for each curve are (1) 0.405, (2)
0.36, and (3) 0.315.
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FIG. 10. Typical patterns arising in case (c), corresponding
to T.,,=0.315 and three different values of k: 0.0 (curve 1),
0.504 (curve 2), and 0.99 (curve 3).
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FIG. 11. Plot of the z, vs k for case (d). The solutions are
twofold: the upper branches give z.,, the lower ones z,,. The
values of T, for each curve are (1) 0.192, (2) 0.24, and (3)
0.0293.
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FIG. 12. Typical patterns arising in case (d), corresponding
to T, =0.29 and k =3.45.

spectively (2)] corresponds to an external (internal)
branch.

The linear stability analysis performed on this type of
structure shows that both the patterns of type (c) and the
ones of type (d) associated with the internal branches are
unstable, whereas structures associated with the external
branch are locally stable. In Figs. 13 and 14 the behavior
of the Lyapunov functional F as a function of k can be
seen for cases (c) and (d), respectively. In Fig. 13 we see
that & (associated, as already said, to unstable structures)
is monotonically increasing with k and remains above O,
which is the value of ¥ for the only stable solutions under
this BC (the homogeneous ones). In case (d), the
behavior of ¥ is similar to the one obtained in the two-
region case (open branches). The structures associated to
the external branches in Fig. 11 are the stable solutions,
and T =0 is the metastable one. The upper branches in
Fig. 14 correspond to the internal branches, and they are
related to the unstable solutions. These solutions are as-
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0.24 //

0.20
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016

012

008
000 020 040 060 080 1.00
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FIG. 13. The Lyapunov functional vs k in case (c), for
different values of 7 ;,: 0.315 (curve 1), 0.36 (curve 2), and 0.405
(curve 3).
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FIG. 14. As in Fig. (13) for case (d): T, =0.192 (curve 1),
0.24 (curve 2),and 0.293 (curve 3).

sociated with saddle points of the functional, whose value
constitutes the ‘“barrier” between attractors.

From the comparison of Figs. 6 and 14 (that is, for the
only stable patterns, i.e., those corresponding to the
Dirichlet-albedo BC), one can draw the following con-
clusions:

(i) For a given value of k, as T, decreases, both two-
and three-region patterns become more stable, i.e., the
corresponding value of F becomes more negative.

(ii) Although two- and three-region patterns cannot
coexist for the same values of T, and k, it can be seen
that as k decreases (for fixed T,,), the associated patterns
become more stable. As a consequence, two-region pat-
terns associated with the Dirichlet-Neumann BC result to
be the most stable. Also, the “barrier” between these at-
tractors and the homogeneous one (7 =0) is the largest.

C. Periodic patterns

As was indicated in [9], the system has also analytic
periodic solutions as long as the applied BC’s (the same at
both ends) are not Dirichlet BC’s. Their local stability
was analyzed in Ref. [9], finding that all these structures
are unstable. With the aim of exploring whether the num-
ber of nodes of the proposed solution has any effect on
the stability of the periodic patterns, we have analyzed
the Lyapunov functional. Figure 15 shows the behavior
of ¥ as a function of the number of nodes. A saturation
effect appears as the number of nodes increases, for a
fixed length. In all the cases, the value of the functional
remains positive, showing the unstable character of this
type of solution.
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FIG. 15. The Lyapunov functional as a function of the num-
ber of nodes for periodic structures. Neumann BC’s are as-
sumed at both ends. (1) T, =0.2, (2) T, =0.15.

V. FINAL REMARKS

In this paper we have analyzed the effect of the bound-
ary conditions on the formation and stability of station-
ary patterns and, in particular, the global stability of the
resulting structures. We want to remark that the albedo
BC has a very important influence on the formation and
global stability of dissipative structures, which has been
overlooked until recently [4,5,12]. The albedo parameter
controls the shape of the patterns and their global stabili-
ty. Its variation changes the value of the Lyapunov func-
tional, and then induces changes between the stable and
metastable states (it alters the relative stability). The un-
stable structures correspond to saddle points of the func-
tional, and define the barrier between attractors. The nu-
merical exploration of the extrema allows us to identify
the nature of the solutions as an alternative to the linear
stability analysis. This line of thought has been
pioneered by Graham and collaborators [6], who have in-
troduced the concept of nonequilibrium potentials. They
have investigated the form of such Lyapunov-like func-
tionals in several problems. The present work is a first
step towards bringing these concepts into the realm of
reaction-diffusion systems.
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